AN ALGORITHM FOR MAGIC TESSERACTS

Marián Trenkler

Magic squares and cubes have fascinated people throughout centuries. A generalization of magic squares and magic cubes are magic tesseracts (magic four-dimensional cube). In Andrew's book [1] its are called $magic\ octahe-droids$. By a $magic\ tesseract$ of order n we mean a four-dimensional matrix

$$\mathbf{Q}_n = |\mathbf{q}(i_1, i_2, i_3, i_4); \ 1 < i_1, i_2, i_3, i_4 < n|,$$

containing natural numbers $1, \ldots, n^4$ such that the sum of the numbers along every row and every diagonal is the same, i.e. $\frac{n(n^4+1)}{2}$.

By a row of \mathbf{Q}_n we mean a 4-tuple of elements $\mathbf{q}(i_1, i_2, i_3, i_4)$ which have identical coordinates at 3 places. A diagonal of \mathbf{Q}_n is a 4-tuple of elements $\{\mathbf{q}(x, i_2, i_3, i_4) : x = 1, \dots, n, i_j = x \text{ or } i_j = n + 1 - x \text{ for all } 2 \le j \le 4\}$. A magic tesseract \mathbf{Q}_n contains $4n^3$ rows and 8 great diagonals. The symbol $\lfloor x \rfloor$ denotes the integral part of x, the symbol $x \pmod{n}$ denotes the number $x - n \lfloor \frac{x}{n} \rfloor$ and the symbol x^* denotes the minimum of the set $\{x, n + 1 - x\}$.

This paper contains formulas for construction a magic tesseract of order n for every $n \neq 2$. A similar algorithm for magic cubes is in [2].

We consider three cases:

$$n \equiv 1 \pmod{2}$$
, $n \equiv 0 \pmod{4}$ or $n \equiv 2 \pmod{4}$.

Figure 1 shows the nine layers of \mathbf{Q}_3 . The element $\mathbf{q}(1,1,1,1)=46$ is in four rows containing the triplets

$$\{46, 8, 69\}, \{46, 62, 15\}, \{46, 17, 60\}, \{46, 59, 18\}.$$

On the eight diagonals there are the triplets

$$\begin{aligned} & \{\mathbf{q}(1,1,1,1) = 46,41,36\}, \\ & \{\mathbf{q}(1,1,3,1) = 15,41,67\}, \\ & \{\mathbf{q}(1,3,1,1) = 60,41,22\}, \\ & \{\mathbf{q}(1,3,3,1) = 53,41,29\}, \end{aligned} \quad \begin{aligned} & \{\mathbf{q}(1,1,1,3) = 69,41,13\}, \\ & \{\mathbf{q}(1,1,3,3) = 35,41,47\}, \\ & \{\mathbf{q}(1,3,1,3) = 26,41,56\}, \\ & \{\mathbf{q}(1,3,3,3) = 64,41,18\}. \end{aligned}$$

(Notes: 1. This picture is a magic square of order 9 with some special properties. 2. In [4] it is point out a relationship between the mathematical brain-twister SUDOKU and four-dimensional Latin hypercubes and magic tesseracts.

46	8	69	17	78	28	60	37	26
62	42	19	51	1	71	10	80	33
15	73	35	55	44	24	53	6	64
59	39	25	48	7	68	16	77	30
12	79	32	61	41	21	50	3	70
52	5	66	14	75	34	57	43	23
18	76	29	58	38	27	47	9	67
49	2	72	11	81	31	63	40	20
56	45	22	54	4	65	13	74	36

Figure 1 - Magic tesseract \mathbf{Q}_3

1. If n is an odd integer then a magic tesseract \mathbf{Q}_n can be constructed using the following formula

$$\mathbf{q}(i_1, i_2, i_3, i_4) = [(i_1 - i_2 + i_3 - i_4 + \frac{n-1}{2}) \pmod{n}]n^3$$

$$+ [(i_1 - i_2 + i_3 + i_4 - \frac{n+3}{2}) \pmod{n}]n^2$$

$$+ [(i_1 - i_2 - i_3 - i_4 + \frac{3n+1}{2}) \pmod{n}]n$$

$$+ [(i_1 + i_2 + i_3 + i_4 - \frac{3n-1}{2}) \pmod{n}] + 1.$$

2. If $n \equiv 0 \pmod{4}$ then

$$\mathbf{q}_n(i_1, i_2, i_3, i_4) = u[v \pmod{2}] + (n^4 + 1 - u)[(v+1) \pmod{2}]$$

where

$$u = (i_1 - 1)n^3 + (i_2 - 1)n^2 + (i_3 - 1)n + i_4,$$

$$v = i_1 + \lfloor \frac{2(i_1 - 1)}{n} \rfloor + i_2 + \lfloor \frac{2(i_2 - 1)}{n} \rfloor + i_3 + \lfloor \frac{2(i_3 - 1)}{n} \rfloor + i_4 + \lfloor \frac{2(i_4 - 1)}{n} \rfloor.$$

3. If $n \equiv 2 \pmod{4}$ (in this case $t = \frac{n}{2}$ is odd) then

$$\mathbf{q}_n(i_1, i_2, i_3, i_4) = \mathbf{s}(u, v)t^4 + \mathbf{q}_t(i_1^*, i_2^*, i_3^*, i_4^*),$$

where $\mathbf{S} = |\mathbf{s}(u, v): 1 \le u \le t, 1 \le v \le 16|$ is a matrix defined by the following tables.

	$\mathbf{s}(u,1)$	$\mathbf{s}(u,2)$	$\mathbf{s}(u,3)$	$\mathbf{s}(u,4)$	$\mathbf{s}(u,5)$	$\mathbf{s}(u,6)$	$\mathbf{s}(u,7)$	$\mathbf{s}(u,8)$
$\mathbf{s}(1,v)$	15	7	14	6	13	5	12	4
$\mathbf{s}(2,v)$	7	15	6	14	5	13	4	12
$\mathbf{s}(3,v)$	0	1	3	2	5	4	6	7
$\mathbf{s}(2a+2,v)$	0	1	2	3	4	5	6	7
$\mathbf{s}(2a+3,v)$	15	14	13	12	11	10	9	8

$\mathbf{s}(u,9)$	$\mathbf{s}(u, 10)$	$\mathbf{s}(u,11)$	$\mathbf{s}(u, 12)$	$\mathbf{s}(u, 13)$	$\mathbf{s}(u, 14)$	$\mathbf{s}(u, 15)$	$\mathbf{s}(u, 16)$
11	3	10	2	9	1	8	0
3	11	2	10	1	9	0	8
9	8	10	11	12	13	15	14
8	9	10	11	12	13	14	15
7	6	5	4	3	2	1	0

Table
$$\mathbf{S} = |\mathbf{s}(u, v)|, \quad a = 1, 2, \dots, \frac{n-6}{4}$$

- $u = (i_1^* i_2^* + i_3^* i_4^*) \pmod{\frac{n}{2}} + 1,$
- $v = 8\lfloor \frac{2i_1-1}{n} \rfloor + 4\lfloor \frac{2i_2-1}{n} \rfloor + 2\lfloor \frac{2i_3-1}{n} \rfloor + \lfloor \frac{2i_4-1}{n} \rfloor + 1.$

Note: The following three proprieties of ${\bf S}$ are very important for our construction.

- 1. Every row of **S** is the set $\{0, \ldots, 15\}$.
- 2. The sum of elements in v-th column is the same for every v such that the number of ones in the binary representation of the number v-1 is even (or odd.)
- 3. $\mathbf{s}(1,v) + \mathbf{s}(1,17-v) = 15$ for $v = 1, \dots, 8$.

References

- [1] W.S.Andrews, Magic Squares and Cubes, Dover, New York 1960
- [2] M.Trenkler, An algorithms for making magic cubes, The Pi Mu Epsilon Journal (USA) 12(2005), 105–106
- [3] M.Trenkler, Magic p-dimensional cubes, Acta Arithmetica 96(2001), 361–364
- [4] M.Trenkler, O SUDUKU trochu inak, Obzory matematiky, fyziky a informatiky 4/2005 (34), 1–8

Address: Catholic University, Hrabovská cesta 1, 034 01 Ružomberok, Slovakia e-mail: marian.trenkler@ku.sk